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Starting from the seminal work of [nuth and Bendix, we develop several no-

tions useful in the study of term rewriting systems. In particular we introduce

the notions of "derived pairs* and *overlap closure" and show that they are use-

ful in analyzing sets of rewrite rules for various properties related to termi-

nation. We also introduce a new representation, based on rewrite dominoes, for

rewrite rules and sequences of rewrites.
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1. INTRODUCTION ' > -

We introduce three new tools for the study of term rewriting systems.

Derived pairs of a rewrite rule generalize the well-known idea of "critical
pairs* introduced by Knuth and Bendix (1970) in their development of a method of
proving the confluence property. The overlap closure of a set of rules is a set

of rules that corresponds to a subset of the transitive closure of the rewriting

relation. Its construction is based on the use of derived pairs obtained from

superpositions of the right hand side of one rule with the left hand side of

another. This process is closely related to the Knuth-Bendix process, which uses

critical pairs for generating new rules in an attempt to achieve confluence. We

use the overlap closure in proving - or disproving - that a rewriting relation
I

is uniformly terminating. It thus provides an interesting dual method to the

Knuth-Bendix process, in which the validity of the critical pair test for con-

fluence depends upon uniform termination. The combination of uniform termina-

tion and confluence provides a decision procedure for the theory of the equa-

tions corresponding to the original rules.

In the study of derived pairs and overlap closures we found it useful to

devise a new way of representing rewrite rules and sequences of rewrites using

what we call rewrite dominoes and "rewrite domino layouts". We will introduce

this representation and use it in presenting the proofs of our main results

about the overlap closure. We believe that this representation also will be

useful in the study of other areas of rewrite rule theory.

Like the Knuth-Bendix process, the overlap closure process may fail to ter-

minate (that is, it may continue to generate new rules indefinitely). In fact,

when the original rules are uniformly terminating, it will usually happen that

overlap closure generation is nonterminating. In this case, the overlap closure

process does not by itself yield a proof of uniform termination, but it may be

useful as an aid in applying other known methods of proving uniform termination

[see Huet and Oppen, 1980]. It can also be used in proving what we call "res-

tricted termination," i.e., termination for all terms up to a given size. Some

applications of restricted termination are discussed in [Guttag, Kapur and

" Musser, 1981].

Perhaps more important is the case where the original rules are not uni-

formly terminating. One would often like to be able to detect this situation

quickly, e.g., in order to avoid wasting time attempting to construct a proof of

uniform termination. We show that under some reasonable restrictions on the

form of rewrite rules, the overlap closure construction provides such a test.

1. more comonly called fnitly tLruinutng or sootherian.

i1
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I.e., we show that if the rules are globally finite (that is to say, the number
of different terms to which any term can be rewritten is finite) and every rule

is right-linear or every rule is left-linear, the overlap closure construction

an be used to effectively search for cycles in the rewriting relation. (That

it does so "quickly" enough to be useful is a claim for which we have limited

empirical evidence, as discussed in the Concluaion section).

:?I
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2. DEFINITION OF OVERP LSUR

For the most part we use standard definitions and terminology for term

rewriting systems from Nuet (1980) and Huet and Oppen (1980). There are a few

exceptions, such as "uniform termination" for "finite termination," and Otermi-

nal form" for "normal form." In [Guttag, [apur, and Musser, 19811, the reader

will find a thorough discussion of this background material. Here we confine

ourselves mainly to the definitions of "derived pairs," a generalization of the

Knuth and Bendix's notion of "critical pairs," and of "overlap closure."

Two terms are said to overlan if one is unifiable with a nonvariable sub-

term of the other. If a and t overlap, we define their sunerposition: either

a) a unifies with a nonvariable subterm t' of t, by the most general unif-

ier (m.g.u.) 0, in which case 0(t) is called a superposition of s and t; or

b) a nonvariable subterm s' of s unifies with t. by m.g.u. 0, in which case

G(s) is called a superposition of s and t.

Now consider ordered pairs of terms (r,s) and (tu) such that a and t over-

lap, as above. (If the variables of t must be renamed, the sane renaming must

be applied to u.) Then along with the superposition 0(t) or G(s) we obtain the

derived vair of terms, (p,q>, where

a) if s unifies with a nonvariable subterm t/i by m.g.u. B.

p-[(t) with 0(r) at I]!

q=O(u);

b) if a nonvariable subterm s/i unifies with t by m.g.u. B,

p-0(r)

q=a[B(s) with 0(u) at i].

In the case of a rewriting system L = ((i - r , the derived pairs obtained

from the pairs (rnl and (1,,rj)) are called critical pairs.

1. The notation [t with u at i] stands for the term obtained

from t by replacing the subterm at position i by u. A "sub-
term position" and "corresponding subterm" within a term is a
finite sequence of nonnegative integers separated by "." and
a related term determined as follows: to the null sequence
(denoted <) corresponds the entire term. If f(t '. nt) is
the subterm at position i then the subterm at position i.j is
t We write t/i for the subterm at position i within term

t.
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Consider, for example, obtaining a critical pair from the rewrite rules:

R Z-40

(RD 0 ye) * ZDI-*D * (y' 0 zI)

We begin by constructing the ordered pairs (e. x- ex) and
((X * y') 0 Z'.D, 

1
D (y' 0 zD)). Now X- * x can be unified with zD 9 y' using

the substitution 0 = [z /x', x/ye). This leads to the derived pair

(e 0 zDR- * (z. 9 z)) which is a critical pair of the rules.

Using derived pairs, the overla closure gL A. written 0CC!), is defined
inductively as follows:

a. Every rule r -4 a in ]I is also In OC(%V.
b0. Whenever r -4) a and t -3) a are In OC(R). every derived pair (p~q> of Cr,s)

and (t,u) is in OC(I) (as p' -3 q).
e. No other rules are in OCC!).

"Exmamples of overlap *losuros:0

i. Let Mx (~) -3 g(z)). theu 0CC!) -

ii. Let M fx) -4 gShMx). h(z) -3 k(a)), then OC(A) 4
U9 if(a) -+ g(k(x))).

iii. Let!A - (z 9 (y z ) -+ (R 9 y) e s). then from the superposition
(R * W: * y')) *a' we obtain the rule

R S ((Z' 0 y') * go) -* ((a * aI) * y') 0 2

Iand from the superpositiost (a 9 ((z' 9 y') * z') we obtain

z 0 (XI0 *(Y' 0 a')) -4(a * (' * y')) 0 2.

These rules then lead to further rules, and 0CC!) Is infinite.
iv. Let M fx) -) gCR), g(h(s)) -+ fMUM)). Then 0CC!) consists of R and

the reflexive rules f~h(R)) -* fMWz) and gShCR) -+ $Mhx)).

The overlap closure OCCI) has a rich structure since the overlap closure
construction preserves some properties of a rewriting system JR. The following
theorem shows that every derived pair of two rewrite rules is also a rewrite
rule, implying that the overlap closure 0C(J) is a rewriting system.

A..49-'



2.1. Xboorm. If rs,tu are terms such that (r,s) and (t,u) are rewrite
rules, then every derived pair <p.q) of (r,s) and (tu) is also a rewrite rule.

Proof. One just has to verify that for each case in the definition of derived

pair that every variable that occurs in q occurs also in p. 0

Let us consider some other properties, based on the properties of its

rules, of a rewriting system R

A term is said to be linear if no variable occurs in it more than once. A

rewrite rule is left-linear if its left term is linear, riht-linear if its

right tern is linear, and linear if its left and right terms are linear.

A rewriting system is called left-linear, right-linear, or linear, based on

whether each of its rules is left-linear, right-linear, or linear, respectively.

The following theorem implies that the overlap closure OC(R) of a right-linear

(loft-linear, linear) I is also right-linear (left-linear, linear).

2.2. Theorem. If r--* and t--)u are two right linear rules with disjoint vari-

able sets, then each of their derived pairs, (p. q> is also right linear.

Proof. There are three cases:

(i) s unifies with the subterm t/i of t by their m.g.u. 0.

The corresponding derived pair <p. q> has

p = [0(t) with 0(r) at i]

8 O(u)

Since a is linear, by Lema 1 in the Appendix, substitutions for any two dis-

tinct variables in t/i in 0 do not have a common variable. The variables in t
other than the ones in t/i do not play any role. So 0(u) is linear.

(ii) the subtern s/i of a unifies with t by their m.g.u. 0.

The corresponding derived pair <p. q) has

p = 0(r)

.



q - [9(s) with 0(u) at i]

Since s/i is linear, by Lena 1 in the Appendix, substitutions for any two dis-
tinct variables in t in 0 do not have a common variable. So, G(s) and O(u) are
linear, and q is thus linear.

(iii) if subterms of a do not unify with t, or a does not unify with subterms of
t, then there are no derived pairs of r-4s and t--)u.

By a similar argument, it can also be proved that every derived pair of two left

linear rules is left linear.

The name "overlap closure" comes from the fact that the rules of OC(R) are

a subset of the transitive closure of the rewriting relation of _:

+

2.3. Lema. If p -4 q is in OC(%) then p -4 q (using l).

Proof. By induction on the construction of p -4 q in OC(%). The basis of the

induction is the case that 1 -4 q is included in OC(R) by virtue of being a rule

of R. Then obviously p -4 q holds. If (p --) q) is included in OC() by being

a derived pair of (r,s) and (t,u) then by the induction hypothesis for the two
rules (rs) and (t,u), we have r -4+ a and t -4 u. By the definition of

derived pair and the transitivity of -4, we then have p-* + q. 03

2.4. Corollary. If OC(R) contains a reflexive rule, t - t, then the rewriting

relation of A has a cycle.

Proof. Immediate from the above lesma. 0

We would like to have the converse of this corollary, that if the rewriting

relation of R has a cycle, then OC(&) contains a reflexive rule. This would
Apermit searching for cycles by incrementally computing OC(l), looking for a re-

flexive rule. While we have not been able to prove this in full generality, we

will present in the next section a restricted version and its proof. The proof

is not easy, because the overlap closure of I is in general much smaller than
the full transitive closure of 4. It is this small size, relative to the tran-

sitive closure, however, that makes it feasible to use the overlap closure as

the basis of an approach to proving uniform termination or, at least, a useful
notion of "restricted termination," discussed in [Guttag, Kapur, and Musser,

,. 1981).

A

/
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3. REWRITE DMINOS AND THE MAIN OVERLAP CLOSURE THEOREM

In order to be able to prove the major result about the overlap closure, we

need to be able to deal precisely with the various oases of overlap between suc-

cessive applications of rewrite rules in a rewrite sequence. We have found it

useful to introduce a new representation of rewriting that helps to make such

cases clear.

The domino representation (or rewrite domino) of a rewrite rule is a rec-
tangle divided into left and right halves in which are inscribed tree represen-

tations of the left and right terms of the rule. Function symbols in the terms

are represented by labelled circles in the trees. Variable symbols are

represented by labeled rectangles, called "variable boxes." For examples of some

rules and their corresponding rewrite dominoes, see Figure 1.

For each kind of domino (that is, each domino corresponding to a specific

rule), we assume there is an infinite stock of dominoes of that kind with their

variable rectangles filled in with all possible terms. For each such domino, we

also assume an infinite number of copies are available in the stock.

A sequence of rewrites can be represented by a domino layout, which is a

two-dimensional arrangement of dominoes that obeys the rules of matching
corresponding to those of term rewriting (Section 2). Before giving the formal

definition of a layout, we refer the reader to an example of a rewrite sequence

using the rules given in Figure 1 and its corresponding domino layout as shown

in Figure 2. Another example is in Figure 3, and the two layouts in Figures 2

and 3 could be concatenated to give a single longer layout.

We draw trees oriented sideways with the root at the left, and we will use

nested triangles to represent trees schematically. We define a unit layout from

t to X to be a horizontal arrangement of a tree t, a domino with trees u and v,

and another tree w,

in which



RULE DOMINO

I.f(xg(y-z))-g(f(xy)-Z)f y

•~~~ Q. IrJJ- <Z

2. f(xJ(y.zi) -f(f(xy),z)f 

n

3.1 f(xkO)-xf

i

4. h(x) i(x)I&1 =
S. h(x)-j(x)

6. f~ix)j(x))-1(x)f

Figure 1. A set of rewrite rules and their correspondli rewrite dominoes.

-- r .
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1. at some position, i, in t there is a subtree t' that is identical to u, ig-
noring the variable boxes that appear In u;

2. the roots of t' and a are horizontally aligned;
3. w is the tree Et with v at i] and the roots of t and w are horizontally

aligned.

A layout from t to1 is defined as

1. a unit layout from t to v; or

2. the concatenation of a layout from t to u with a layout from u to v, with

both copies of u dropped from the arrangement; or

3. any arrangement obtained from a layout by translating horizontally any dow-

inc. as long as no other domino or end tree is overlaid or crossed (this

allows compaction of a layout by placing one domino above another when they

match disjoint subterms).

The examples in Figures 2 and 3 illustrate a number of observations we can

make about this representation of rewriting:

1. In a domino layout there is no distinction between different orders of

rewriting when the rules are being applied to disjoint subterms; e.g., the

layout in Figure 3 would not be different if rule S had been applied before

rule 4 or before rule 3. One can think of these rules being applied in

parallel, since the order of application is always imaterial in this case.

The layout representation just makes this property especially evident.

2. To the property that *the rightmost term of a rewrite sequence is terminal"

corresponds the property that 'there is no way to play a domino on the lay-

out" (formally, there is no way to concatenate a unit layout onto the lay-

out). The layout is said to be blocked. (The layout in Figure 3 is

blocked.)

3. Thus the rules have the uniform termination property if and only if every

possible layout eventually is blocked. Equivalently, there are no infinite

layouts.

Our purpose with this representation of rewriting is to provide a conceptu-

al tool for finding and presenting proofs of new results about term rewriting

systems. The first result we will prove with the aid of rewrite dominoes is one

that will allow us to speed up the search for cycles by considering only those

sequences of rewrites in which a "major rewrite" occurs.

A rewrite to --) t is called a aJig rewite if it is by application of a

rule, t -4 u, to the entire term to; i.e., for some substitution 0, 0(t) t

and 0 Cu) - t1 . When only a proper subterm of t0 is matched, t0 -4 tI is called
lot a minor rewrite .

L
4

...
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In a layout, a domino is called a major doming (of the layout) if it

represents a major rewrite, and a minor domino otherwise. Pictorially, major

dominoes are those that span the width of the layout.

A maor cycle is a cycle in which at least one of the rewrites is major.

3.1. Theorem. If a rewriting relation has a cycle, it has a major cycle.

Proof. Let us define the corlidor of a domino in a layout to be the horizontal

strip across the layout determined by the position and width of the domino:

Lii
Any two corridora in a layout are either disjoint or one is contained in

the other. Therefore, we can find a corridor that is spanned by a domino and

which contains a layout as follows: start with any leftmost domino and follow

its corridor to the right; whenever a domino is encountered that doesn't lie in

the corridor, adopt its corridor. When we reach the right end, we have a corri-

dor containing a layout including a domino that is major with respect to it. If

the whole layout is cyclic, the identified layout will be also, and will

represent a major cycle. D

We now want to define some terminology and some manipulations of layouts that

will be useful in proving theorems about the overlap closure of a set of rules.
Consider an adjacent pair of dominoes in a layout. Let t and u be the trees on

the adjacent halves, where a subtree t' of t is identical to u (possiblyJI t' - t):

I <OR F7

0 If either of t' or u is contained entirely within a variable boz, i.e., the

match is not between two nonvariable subterms, we say that the pair of dominoes

- _

m/
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is weakly matched, and otherwise that it is stronaly matched.

ExanMles. In Figure 3, the domino pair

is weakly matched. Similarly the pair

x

that appears in the concatenation of the layouts of Figures 2 and 3 ia weakly

matched, while all the other adjacent pairs are strongly matched.

Now suppose we have two weakly matched dominoes, as in Figure 4a, where t'

is contained in the x variable box. If the (s,t) domino is right-linear (i.e..

t is linear), then the pair of dominoes can be tramnosed as follows: remove the

(u,v) domino from the layout and move the (s,t) domino to the right, so that

copies of the (u,v) domino can be inserted to the left of the (s,t) domino, one

adjacent to each z box in a (see Figure 4b). Then the reaultinE cofiuato

is still a layout, (the dominoes all match, using the same set of rules) with

the same end trees. This is the case also when a symmetric kind of transposi-

tion is performed on the layout in Figure Sa, producing the layout in Figure Sb,
=J where we assume that the (u,v) domino is left-linear.

' Such transpositions cannot necessarily be performed on strongly matched

" dominoes, but we will define a different kind of manipulation for this case.

Strong matching corresponds to the concept of overlapping in the definition of
derived pairs: if (r,s) and (t,u) are rules that have a derived pair <p,q),

then the dominoes corresponding to (r,s) and (t,u) can be placed in a layout so

that they are strongly matched. The layout configuration shows just where the

strong match occurs and identifies a potential derived pair.

h h
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Suppose now that instead of our stock of dominoes corresponding to a given

rule set 1, we have a stock corresponding to OC(), the overlap closure of A.

Then for any strongly matched pair of dominoes in a layout there is a domino in

our stock which corresponds to a derived pair generated by the matching pair.

By Lemma 3 proved in the Appendix, we can replace the strongly matched pair in

the layout by the "derived pair domino" thus identified, and the result will

still be a layout with the same end trees.

We ate now in a position to prove:

3.2. Theorem. Suppose th, rewriting relation of R is globally finite and every

rule i* & is right-linear. If the rewriting relation of A has a cycle, OC(%)

contains a reflexive rule.

Proof. (By construction.) Lot

(0) to --4 tl -4 . - tn -- to
0 1 0

be a given cycle. Corresponding to (C) is a cyclic domino layout

where the dominoes correspond to rules of R. In fact since each of these rules

is also in OC(R), we may take this layout as a layout of dominoes corresponding

to rules of OC(R). We will show hov to manipulate this layout to a form that

shows there is a reflexive rule t -- t in OC(R).

We describe the manipulations as an algorithm operating on the cyclic lay-

out (CC).

Step 1. (Extract major cycle.] As in the proof of Theorem 5.1. extract from

(CC) a sublayout representing a major cycle, making it the layout subject to the

following steps. Also replace t0 with its subterm matched by the layout.

Step 2. [Push major dominos to right end.) Manipulate the layout to a form in

which all of the major dominoes are together at the right end, by means of tran-

spositions or replacements by derived pair dominoes: whenever P is a major domi-

no and I is a minor domino adjacent to 2 on the tight
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either P and Z are weakly matched, in which case they can be transposed, or they
are strongly matched, in which case they can be replaced by the derived pair

domino they define - which is a major domino. This derived pair domino is also

right linear, as Lema 1 in the Appendix shoews.

Step 3. (Look for cycle among major dominoes.) There is now a nonempty sequence

of major dominoes D1 ,..., DU at the right end of the layout:

These dominoes can only be strongly matched - except for the case where the

right-hand side of D is just a variable. but shortly we will show that such a

possibility can be ruled out. If there is some contiguous subsequence

Di ,... D that forms a cyclic layout

then, since there can only be strong matches, these dominoes can be combined by

j - i + I replacements into a single domino D that forms a cyclic layout:

Let A represent (p,q). Then there is a substitution 0 such that u0 = 0(p) and

O(q) - u 0 , i.e., 0 unifies p and q. Furthermore, a derived pair of (p,q) and

(p.q) is the reflexive rule (9(p), 0(q)). Since this is in OC(R), we terminate

the algorithm.

Step 4. [Duplicate.] If no such subsequence exists, construct a copy of the

layout adjacent to it and return to Step 2 with the resulting layout:

That concludes the statement of the algorithm. Before considering the question
of termination of the algorithm, we dispense with the detail mentioned in

Step 3: the case of adjacent major dominoes 2 and f where the right term u of 2l

'I I
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is Just a variable. We can assume the left term t of 2 is not just a variable

(if it were thou it would have to be the sam variable as u and we would already

have a reflexive rule). Since the layout is cyclic, if we drop 2 from the lay-

out, we obtain a layout that has as its right end term a proper subterm identi-

cal to the left end term. From this we conclude that the term rewriting rela-

tion is not globally finite, contrary to assumption. This contradiction rules

out the case under discussion.

It is obvious that each step of this algorithm is effective and terminat-

ing. Overall termination is guaranteed by the following facts:

a. At the k th execution of Step 2, the number of major dominoes, a, at the

right end is at least 2k
.

b. Let t0(k] denote the term to the left of D in the layout at the k th exe-

cution of Step 3. Since each t0 [k] is derived from t0 and the rewriting

relation is globally finite, there are only finitely many distinct possi-

bilities for t0 [k]. By a), then, there is one such term for which arbi-

trarily long layouts of major dominoes exist. ASain by global finiteness,

these layouts cannot all continue without producing a term, u0, that is a

duplicate of some term previously obtained in the layout.

Since the algorithm always terminates, and does so with a reflexive rule in

OC(A), this proves the theorem. 0

The corresponding theorem obtained by replacing "risht-linear" by "left-

linear* can also be proved in a similar manner. Combining these theorems with

Corollary 4.3, we have:

3.3. Theorem. Suppose the rewriting relation of J is globally finite and every

rule in i is riSht-linear or every rule in Y is left-linear. Then the rewriting

relation of R is uniformly terminating if and only if OCCI) contains no reflex-
ive rule.

Some applications of this theorem are explored in [Guttag. Kapur. and Musser,
~1981J

*• Recently, Dershowit (1981) has propossed a *forward chain" construction for

rewriting systems and proved that a riSht-linear rewriting system is uniformly

terminating if and only if it has no infinite forward chains. However, for

left-linear systems the analogous result requires that the left-hand sides of

the rules be nonovorlappinS, a problem that we had independently encountered

whem considering the forward chain construction and a similar backward chain

construction. We were thus led to invent the overlap closure construction. The

i/
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folloving example from Dershowitz (1981) illustrates the advantage of the over-

lap closure conastruotion over forward chains. Using the forward chain construc-

tion, it is sot possible to determine the nontermination of this left-linear

rewrite system, as pointed out by Dorshowits. The rewriting system is

f(aO. bo. x) -4 (z. z. bC))

b() - ).

These rules have only two forward chains, both finite:

f(O. bo,:) .(x z, bo) * f(. z, SO), and b( ) SO ,

but we cannot tonclude anything about the termination of the rules because they
are not right-linear and, although they are left-lineor, the left-hand sides are
overlapping. But ia the overlap closure construction, the rules have a derived

pair rule

MOb, bO, x) -4 fMx, x, bo).

which, when overlapped with itself, gives the reflexive rule

f(bo, bO, bo) - f(bO. bo, b() )),

as a derived pair, proving that the rules are noaterninating.

.4 i

I

-I
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4. CONOSION

l e have discussed two ways to make use of finite subsets of the overlap

closure: proving restricted termination and disproving uniform termination. We

have explored, without much success, using such finite subsets as parts of

proofs of uniform termination. We conjecture that for certain classes of tern

rewriting systems it should be possible to compute a bound, n, such that if a

cycle exists, there exists a cycle in which every term is of size n or less.
For such classes, the overlap closure would provide a decision procedure for un-

iform termination.

Another open question about the generality of the overlap closure construc-

tion is whether the assumption of left-linearity or right-linearity is neces-

sary. Although we have not been able to find proofs of our results without this

assumption, we have also been unable to construct a counterexample. In any

case, as discussed above, the overlap closure construction is note general than

either forward or backward chain constructions.

For the class of term rewriting systems to which it may be applied, con-

structing the overlap closure is as useful as constructing the complete transi-

tive closure. Furthermore, using the overlap closure to show restricted termi-

nation or the absence of uniform termination will always involve computing fewer

terms.than would using the transitive closure. We do not yet have much empiri-

cal or analytical evidence as to the absolute efficiency of using the overlap

closure for these purposes. The key question is how many terms must be examined

in order to demonstrate that no cycle is possible for terms of up to size n.
The few examples we have tried, using a preliminary implementation, we have
found encouraging.

The basic idea of conducting a search for repeated terms (cycles) or sub-

terms sprang from discussions in 1977 between one of the authors (Musser) and
._J Dallas Lankford. We thank P. Gloess, 0. Buet, and 3. Levy for their interest

and assistance in refuting some of our earlier conjectures, thus helping us ar-
rive at the notion of the overlap closure and the theorems of Section 3. We

also thank P. Narendran for assistance in constructing the proof of the theorems

in the Appendix and 3. GoSuen for discussions of the approach to term rewriting
used in 0B. John Guttag's research is supported in part by the National Science

Foundation under grant MCS78-01798 and by an Office of Naval Research Contract

with DARPA funding ON00014-75-C-0661.
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1. Loia. Let t and u be unifiable torms with disjoint variable sets, and B be

their most general unifier. Let 0* be the restriction of 0 to the variables of

u, say O •  [el/vl .... en/v]. If t is linear, then all variables in 0,.e

are distinct.

Proof. For every variable z having k (1) occurrences in a. replace different

occurrences of x by distinct variables zl,...,x k that do not appear in t and u.

Lot u' be the resulting term, which is linear.

By Lema 2, in the m.g.u. 0' of t and u', substitutions for distinct variables

in t and a' do not have a comen variable. Let a be the m.S.u. for the set of

terms 0B(x lilk, the substitutions for the variables used to replace multi-

ple occurrences of z in u. If these a for every variable z having multiple oc-

currences in u are composed with 0', we get a unifier of t and u.

In this unifier, substitutions for variables in u do not have a common variable.

From this, it is evident that the m.S.u. 0 of t and u cannot have substitutions

for variables in u that share conon variables. 0

2. Lamma. For two unifiable terms t and a, if t and a are linear, then the sub-

stitutions in their m.g.u. 0 for any two distinct variables of t or a do not

have omon variables.

Proof. By induction on the structure in term t.

Basis: t is a variable.

Then 0(t) - u and the statement trivially holds.

Jndautive step: t - f(tl,**..tn)
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For t and u to be unifiable, either u is a variable or u -= f(u1 ..... un). The

case of u being a variable is handled as in the basis step.

For the case u - f(u15 ...,u n ), for each i, lliSn, t, must unify with u. by

their m.g.u. OG, say. By the inductive hypothesis, the statement holds for each

of 01" Since t and u are linear, the disjoint union of Oi, 1i~n, is the m.g.u.

O of t and u. It follows that the statement of the lemma holds for 0 also. 3

3. Lmmas. Suppose to -- t1 using r -) s applied at position i, t1 -- t2 using

t -4 u applied at i.j, and s/j and t overlap determining the derived pair

(p,q> - (0(r),[O(s) with O(u)at J]). Then to -) t2 using p -- q applied at i.

A similar result holds for the case in which s unifies with a subterm of t.

Proof. Rename the variables of t and u, if necessary, so that s and t have no

variable in common. There is some subterm t /i and a substitution 0 such that

1(r) = t0/ and t1 = [t0 with 01 (s) at i.

Again, there is some subterm t1/(i.j) and a substitution 02 such that

O2(t) - t 1/(i.j) and t2 - It1 with 02 (u) at i.j].

Since the variables of s and t are disjoint, we have (01 U 0 2 )(a/j) - 01(l/j)=

S2 (t) - (9I U 02 )(t). That is, 01 U 02 is a unifier of s/j and t and therefore

has B as a factor:

1 U 02 - )3 9 0, for some substitution 03.

Thus t0 i - 1 (r) - (91 U 02 )(r) - (03 * 0) (r) 0 o3 (9(r)) - 63 (p). That is, t0

is matched by p at i. Now consider 03 (q); it is

03 ([(s) with 0(u) at J])

- [03(e(s)) with 0 (e(u)) at J]
3

_________......
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Is1 a with 02(u) at J1.

IThus t 2 ' [t I with 02(u) at i.J1

- [[t 0 with 01(s) at 11 with 0()at i1j)

= [to with [01(s) with 02(u) at J1 at ii

= [t 0 with 0,(q) at ii. showing that

t 0t2 using p-+q applied at i. We omit the proof of the case in which s uni-

fies with a subter. of t.D

.;Su
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